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Matrix Completion for Weakly-supervised
Multi-label Image Classification

Ricardo Cabral, Fernando De la Torre, João P. Costeira, Alexandre Bernardino

Abstract—In the last few years, image classification has become
an incredibly active research topic, with widespread applications.
Most methods for visual recognition are fully supervised in
nature, as they make use of bounding boxes or pixelwise
segmentations to locate objects of interest. However, this type
of manual labeling is typically time consuming and error prone.
This paper proposes a weakly-supervised system for multi-label
image classification. In this setting, training images are annotated
with a set of keywords describing their contents, but the visual
concepts are not explicitly segmented in the images.

We formulate the weakly-supervised image classification as a
matrix completion problem. Compared to previous work, our
proposed framework has three advantages: (1) Unlike existing
solutions based on multiple-instance learning methods, our model
is convex. We propose two alternative algorithms for matrix
completion based on a rank minimization criterion specifically
tailored to visual data, and prove their convergence. (2) Unlike ex-
isting discriminative methods, our algorithm is robust to labeling
errors, background noise and partial occlusions. (3) Our method
can potentially be used for semantic segmentation. Experimental
validation on several datasets shows that our method outper-
forms state-of-the-art classification algorithms, while effectively
capturing each class appearance.

Index Terms—Weakly-supervised learning, multi-label image
classification, segmentation, rank minimization, nuclear norm.

I. INTRODUCTION

With the ever-growing amount of digital image data in
multimedia databases, there is a great need for algorithms that
can provide effective semantic indexing. Attributing keywords
to digital images, however, is the quintessential example of a
challenging classification problem. Several aspects contribute
to the difficulty of this problem, including the large variability
in appearance, illumination and pose any object class can
exhibit. To add to this complexity, natural images often depict
a multitude of objects rather than a single one. In this multi-
label setting, the interaction between objects needs to be
modeled so classifiers are able to discern between co-occurring
concepts. To address this issue, standard discriminative ap-
proaches such as Support Vector Machines (SVMs) or Linear
Discriminant Analysis have been extended to the multi-label
case [1]. A major limitation of these approaches, however, is
that the location for objects of interest has to be known in
the training images, usually in the form of bounding boxes
or a full-blown pixelwise segmentation. While efforts have
been made to provide datasets with this information [2], [3],
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Fig. 1. This work proposes a weakly-supervised method for multi-label
image classification. The training set images (a) are labeled with the objects
that are present but their location in the image is unknown. Given unseen test
images (b), our method is able to classify which classes are present in the
image and segment the image into regions that correspond to the classes.

manual labeling is still labor intensive, subjective and error
prone. Moreover, it has been shown that manual segmentations
are not necessarily the optimal spatial enclosure for object
classifiers [4]. To cope with an increasing number of concepts
and larger scale datasets, there has been an increased interest
in transitioning away from these fully supervised approaches.

Weakly-supervised algorithms [4]–[7] relieve the labeling
burden by learning using labels without localization infor-
mation. Figure 1 illustrates this setting and the problem we
address in this paper: given a weakly-labeled training set (Fig-
ure 1(a)), we segment and label new test images (Figure 1(b)).
Several Multiple Instance Learning (MIL) methods [4], [8]–
[13] have been proposed in the literature for solving this type
of weakly supervised learning problem. However, existing
MIL methods have three major drawbacks: (1) The MIL
problem is usually cast as a NP-hard binary quadratic prob-
lem [4], [8]–[12]. Most existing algorithms to solve MIL lead
to non-convex models and consequently are highly sensible
to initialization. Moreover, the extension of MIL to the multi-
label case is not trivial. Current multi-label MIL approaches
[9]–[11] heavily rely on an explicit enumeration of instances,
which are then solved by single class MIL or Multi-label
learning. (2) They lack robustness to outliers. Recall that most
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himg = ↵ · hcow + � · hgrass + � · hbg

Fig. 2. The left image represents the original training image that has been labeled with the words grass and cow. Our algorithm decomposes the histogram
of this image as a linear combination of two class histogram basis (cow, grass) plus another histogram hbg modeling errors and the background. Class
localization can be visualized on the image by interpreting each histogram as a probability distribution of which words belong to the class. Best seen in color.

discriminative approaches project data directly onto linear or
non-linear spaces [4], [8], [12]. Thus, a single outlier can bias
the solution, severely degrading classification performance. (3)
It is unclear how existing MIL approaches can be extended to
use partial information, such as incomplete label assignments
or missing feature descriptions. For instance, in Figure 1(a)
one training image has no label for the category grass.

We observe that the specific problem of image classification
and localization problem has more structure than the one
exploited by MIL problems. MIL approaches consider images
as bags with many instances denoting possible regions of
interest. A major contribution of our work is to instead make
use of the additive property of histogram representations such
as Bag of Words (BOW) [14]: the histogram of an entire image
is a weighted sum of the histogram information of all of its
subparts. Using this property, we bypass the combinatorial na-
ture of finding desired regions in every positive image. Instead,
the main aim of our algorithm is to factorize the histogram of
an image as a weighted sum of class histograms (as many
as objects are present) plus an error to model the background.
Figure 2 shows an illustration of the histogram factorization for
one training image. By using this property, image classification
can be posed as a rank minimization problem, since class
histograms are shared across images, and the number of class
histograms is small compared to the number of images. This
paper proposes to cast the weakly supervised multi-label image
classification problem under a matrix completion framework.
Contrary to typical MIL approaches, our proposed approach
is fueled by recent advances in rank minimization [15], [16]
and therefore is convex. Figure 3 illustrates the main idea
of the paper. Each column of Zobs has a concatenation of
the labels (1 if the class is present and zero otherwise) and
the histogram htri for one training image (Figure 3 (a)). In
the test set (Figure 3 (b)), labels are unknown and denoted
as question marks (?). Our method fills the unknown entries
and corrects known features and labels such that Z has the
smallest rank possible. It can also infer the feature descriptor
of a particular class (Figure 3 (c)). This is achieved by looking
for the unknown histograms whose label vector denotes the
presence of only this class. In doing so, we obviate the need for

training with precise localization or expensive combinatorial
MIL models, as required by previous methods. To summarize,
the main contributions of this work are threefold:

1) We show the advantages of matrix completion over
classic discriminative approaches for image classifica-
tion. By performing classification under this inherently
multi-label paradigm, we can easily cope with missing
information as well as outliers in both the feature and the
label space. We present comparisons on several datasets
that show how these properties lead to a classification
improvement over state-of-the-art methods;

2) We exploit the additive nature of histogram features.
Since histograms of images are sums of their subparts,
a rank minimization criteria allows for learning latent
individual representations for all classes in the dataset.
Thus, we can recover the localization information with-
out the need for fully supervised training or MIL. We
show empirical validation that our approach is able to
associate the semantic concepts with regions in images;

3) We propose two new convex rank minimization algo-
rithms, MC-Pos and MC-Simplex, motivated by the
multi-label image classification problem and the additive
histogram property. We prove that these enjoy the same
convergence properties of Fixed Point Continuation
methods for rank minimization without constraints.

A preliminary version of this work was published in [17].

II. PREVIOUS WORK

This section reviews related image classification work and
provides a brief survey on the use of the nuclear norm as a
surrogate for rank minimization problems in computer vision.

A. Image Classification

Since the seminal work of Barnard and Forsyth [18], many
researchers have addressed the problem of associating words
to images. Image semantic understanding is now typically
formulated as a multi-label problem. In this setting, each image
may be simultaneously assigned to more than one class. This is
an important difference from multi-class classification, where
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Fig. 3. Our weakly supervised classification algorithm works by completing a matrix Zobs as shown above, where the question marks denote unknown
entries. We complete this matrix such that it can be factorized into a low rank matrix Z and an error matrix E. This ensures that background distributions and
feature/label outliers are captured in E, since they increase the rank of Z. In the training submatrix (a), the ith column concatenates the image histogram htr

i
with its respective {0, 1} label assignments. Note that a partially labeled example such as the second training image (a) is trivially handled by our framework.
In the test submatrix (b), the jth column is a concatenation of histogram htst

j with unknown assignments. In this transductive setting, the statistics of the
test set are also used in the learning. By completing (c), we obtain a representative histogram for each class, in spite of their co-occurrence in the images.

classes are assumed to be independent and mutually exclusive.
While multi-label can trivially be handled in multi-class ap-
proaches by dropping the mutual exclusivity constraint, Desai
et al. [19] have shown the need to model object interactions.
Therefore, many multi-class techniques such as SVM and
LDA have been modified to make use of label correlations
to improve multi-label classification performance [1]. In these
approaches, localization is achieved by detection, using e.g.,
a sliding window. This is, however, at the expense of a fully
supervised training set where localization is known a priori.

Several researchers have addressed the problem of clas-
sifying an image and providing precise class localization.
Deselaers et al. [20] use a CRF to learn new class appearances
from previously known ones obtained with supervised training.
Blaschko et al. [21] learn a supervised structured output
regression where the outputs are coordinates of a bounding
box enclosing the object. Jamieson et al. [7] associate config-
urations of SIFT features to captions. Tighe and Lazebnik [22]
propose lazy learning for large scale image parsing.

Alternatively to these approaches, Multiple Instance Learn-
ing (MIL) has surfaced as a reliable framework for performing
learning in the presence of unknown latent factors. First
proposed in [23], this class of learning problems extends the
typical classification setting to the case where labels are no
longer applied individually, but to multi-sets or “bags”: a bag
is labeled positive if at least one of its instances is positive and
negative if none of its constituents are. In computer vision, this
framework has been used for weakly supervised learning tasks
such as learning deformable part models [12] and to explicitly
model the relations between labels and specific regions of the
image, as initially proposed by Maron and Lozano-Perez [24].

This method allows for the localization and classification
tasks to benefit from each other, thus reducing noise in the
corresponding feature space and making the learned semantic
models more accurate [4], [8]–[11], [25], [26]. Although
promising, the MIL framework is combinatorial, so several
approaches have been proposed to avoid local minima and
deal with the prohibitive number of possible subregions in

an image. Zha et al. [10] make use of hidden CRFs while
Vijayanarasimhan et al. [11] recur to multi-set kernels to
emphasize instances differently. Yang et al. [8] exploit asym-
metric loss functions to balance false positives and negatives.
These methods, however, require an explicit enumeration of
instances in the image. This is usually obtained by breaking
images in a small fixed number of segments or applied in
settings where detectors perform well, such as the problem of
associating faces to captioned names [27]. On the other hand,
to avoid explicitly enumerating the instances, Nguyen et al. [4]
coupled constraint generation algorithms with a branch and
bound method for fast localization. This is also seen in the
negative data-mining process of [12]. Yakhnenko et al. [26]
propose a MIL algorithm of linear complexity in the number
of instances by using a non-convex Noisy-Or model. Multi-
task learning has also been proposed as a way to regularize
the MIL problem to avoid local minima due to many available
degrees of freedom. In this setting, the MIL optimization is
jointly learned with a fully supervised task [25].

To the best of the authors’ knowledge, the only work model-
ing MIL as a convex problem is by Li and Sminchisescu [13].
They replace the classifier loss and the non-convex constraints
on the positive bags by convex alternatives (f-divergence
family loss and class likelihood ratios for each instance).
They show promising results over standard MIL formulations
as the ratio of positive instances in positive bags increase.
Unfortunately, this is not the setting in image classification,
as the percentage of possible negative bounding boxes in an
image largely exceeds that of the positives.

B. Nuclear norm as a surrogate for rank minimization
Rank minimization has recently received much attention

due to its success in collaborative filtering problems such as
the Netflix challenge. Rank minimization techniques have also
been applied to minimum order control [28], [29], to find least
complex solutions achieving a performance measure.

A breakthrough by Candés and Recht [15] states the min-
imization of the rank function, under broad conditions, can
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be achieved with the nuclear norm (sum of singular values).
This result is a clear parallel with the results in [30] for
the `1 and `0 norms. Since the natural reformulation of the
nuclear norm gives rise to a Semidefinite Program, off-the-
shelf optimizers can only handle problems of limited size.
Thus, several methods have been devised for its efficient [15],
[16], [31]–[34] and incremental [35], [36] optimization.

In the context of computer vision, the nuclear norm has been
applied to several problems: Structure from motion [36], [37],
robust PCA [38], subspace clustering [39], segmentation [40],
tag refinement [41], camera calibration [42].

The nuclear norm regularizer has been applied to classi-
fication tasks in e.g., [26], [41], [43]–[47]. Most of these
approaches exploit the nuclear norm to enforce correlations be-
tween classifiers [47] or to allow for dimensionality reduction
[43] in discriminative settings. Harchaoui et al. [47] decom-
pose the nuclear norm into a surrogate infinite-dimensional
optimization, allowing the feasibility of coordinate descent in
large scale settings with smooth losses. Instead, we propose
a generative approach based on [46] that is able to decouple
appearance descriptions of co-occurring classes, allows for a
recovery of segments and thus localization in the images.

This work can also relate to Latent Semantic Analysis, as
the low rank justifications provided in Sec. III are similar
in nature to the ones provided for subspaces obtained from
document-term matrices. Bosch et al. [48] provide preliminary
results that visual words associated with high probability to a
given category can provide cues for localization. Our method,
however, is not subject to local minima and estimates subspace
ranks automatically.

III. MATRIX COMPLETION FOR MULTI-LABEL
CLASSIFICATION OF VISUAL DATA

This section describes the main contributions of this paper:
We start by presenting the use of matrix completion for general
classification tasks. Then, we describe its use for weakly
supervised multi-label image classification and localization.

A. Classification as matrix completion
In a supervised setting, a classifier learns a mapping (see

footnote1 for notation) W : X → Y between the space of
features X and the space of labels Y . This learning is done
from a dataset of N training tuples (xtri ,y

tr
i ) ∈ RD × RK ,

where D is the feature dimension and K the number of classes.
In particular, linear classifiers minimize a loss l(·) between the
output space and the projection of the input space, as

minimize
W,b

N∑

i=1

l

(
ytri , [W

> b]

[
xtri
1

])
, (1)

1 Bold capital letters denote matrices (e.g., D), bold lower-case letters
represent column vectors (e.g., d). All non-bold letters denote scalar variables.
dj is the jth column of the matrix D. dij denotes the scalar in the row i and
column j of D. 〈d1,d2〉 denotes the inner product between two vectors d1

and d2. ||d||22 = 〈d,d〉 =
∑i d2i denotes the squared Euclidean Norm of the

vector d. tr(A) =
∑i aii is the trace of the matrix A. ||A||∗ designates

the nuclear norm (sum of singular values) of A.‖A||2F = tr(A>A) =
tr(AA>) designates the squared Frobenius Norm of A. 1k ∈ RK×1 is a
vector of ones, and ej ∈ RK×1 denotes the jth canonical vector, with 1 at
the jth position and zero otherwise. 0K×N ∈ RK×N is a matrix of zeros
and IK ∈ RK×K denotes the identity matrix.

where parameters W ∈ RD×K and b ∈ RK×1 describe the
class decision boundaries. After the training stage, these pa-
rameters are used to estimate unknown labels for test samples
ytstj from their feature descriptors xtstj . This is typically done
independently for each test entry, as

ytstj = [W> b]

[
xtstj

1

]
. (2)

In this paper, we formulate the problem of jointly classi-
fying M test samples as one of matrix completion. For this
purpose, let us define the feature matrices Xtr ∈ RD×N and
Xtst ∈ RD×M . These matrices respectively collect in each
column feature vectors for N training and M test samples.
Without loss of generality, the linear model assumed in (2)
can be written in matrix form. Specifically, it states that
Ytr ∈ RK×N , the matrix concatenating the labels for all
training images, can be obtained by the linear combination

Ytr = [W> b]

[
Xtr −Etr

X

1>

]
−Etr

Y , (3)

where EY
tr and EX

tr denote errors in the labels and features,
respectively. The test labels Ytst ∈ RK×M are obtained as

Ytst = [W> b]

[
Xtst −Etst

X

1>

]
, (4)

with no error in the labels since they are unknown. Concate-
nating labels and features in (3) and (4) in one matrix yields

Z =




Ytr Ytst

Xtr Xtst

1>


−




Etr
Y 0

Etr
X Etst

X

0>


 = Zobs −E, (5)

where Zobs ∈ R(K+D+1)×(M+N) holds all observed entries
(with Ytst unknown) and E is a matrix of errors.

Note that according to (3) and (4), the matrix Z defined in
(5) is rank deficient. That is, the rows comprising the labels
are linearly dependent on the feature rows. In the absence of
error (E = 0), the input matrix Zobs is also low rank, as

rank(Z) = rank(Zobs) = rank

([
Xtr Xtst

1>

])
. (6)

In this case, we observe that (3) becomes

Ytr = [W> b]

[
Xtr

1>

]
, (7)

and thus the Ytst in (4) does not increase the rank of Z, since

Ytst = [W> b]

[
Xtst

1>

]
. (8)

Using this result, Goldberg et al. [46] suggest unknown test
labels in Ytst can be recovered by completing these entries
such that the rank of Z is minimized. This can be written as

minimize
Ytst

rank(Z)

subject to Z =




Ytr Ytst

Xtr Xtst

1>


 .

(9)
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In practice E 6= 0, so we modify (9) to include (5). To avoid
trivial solutions, we penalize errors with a loss l(·), as

minimize
Ytst,Etr

Y ,EX

rank(Z) + λl(E)

subject to Z =




Ytr Ytst

Xtr Xtst

1>


−




Etr
Y 0
EX

0>


 ,

(10)

where λ is a tradeoff parameter and EX = [Etr
X Etst

X ]. We
discuss the choices of loss functions l(·) in detail in Sec. III-D.

There are three fundamental advantages in casting a general
classification problem as the matrix completion in (10).

First, it bypasses the estimation of the model parameters W
and b. This allows our formulation to estimate errors in the
features EX . Parametric models that estimate W and b (such
as linear regression or SVMs) do not model this error, and thus
implicitly assume EX = 0. Note that the product W>EX in
(3) will result in a non-convex problem when both W and EX

are considered as optimization variables. While (10) is also
non-convex, we show in Sec. III-C that a convex relaxation
exists, backed by the recent advances in rank minimization.

Second, errors in features and labels are estimated jointly,
so missing data in labels and features can easily be estimated.

Third, we minimize the rank of Z, containing training and
test samples. This transductive setting allows the model to
leverage the statistics of the test set.

B. Image classification as matrix completion

In spite of justifying the applicability of matrix completion
as a generic classification framework, the explanation provided
by Goldberg et al. [46] described in Sec. III-A only spans the
row space of Z. In this section, we provide an alternative
explanation for the low rank of Z in (5), based instead on its
column space. Let us assume the case when histograms are
used as feature vectors. Note that several popular techniques
for obtaining global representations of images in computer
vision, such as Bag of Words or HOG, fall under this as-
sumption. Let hi denote such a histogram representation for
image i. In this case, the feature submatrix X = [Xtr Xtst]
in (5) contains one histogram per column, as

X =
[

htr1 · · · htrN htst1 · · · htstM
]
. (11)

One property of image histograms is that they can be rep-
resented by a sum of the histograms of its segments (see
Figure 2). Without loss of generality, we consider these latent
histograms as Ck ∈ RD×Nk , the Nk canonical histogram rep-
resentations for class k. Therefore, we have that the histogram
of image i can be written as a sum of class representatives Ck

weighted by coefficients ak,i ∈ RNk×1, as

hi =
∑

k

Ckak,i + EXi, (12)

where EXi collects errors (e.g., words in the background
that do not pertain to any class). If we concatenate the
representatives Ck in the matrix

C =
[

C1 C2 · · · CK

]
, (13)

and collect weights ak,i in a matrix A we can write (11) as

X = CA + EX . (14)

Additionally, since we postulated each ckj as belonging to
only class k, the correspondent label matrix for C is given by

YC =
[

e11
>
N1

· · · eK1>NK

]
, (15)

where ei denotes the ith canonical vector. Merging (11) and
(15), we obtain the data matrix Zobs in (5) as

Zobs =

[
YC

C

]
A +

[
EY

EX

]
= Z + E, (16)

the sum of a low rank component matrix Z with an error
matrix E. A close inspection of (16) allows us to state that
Zobs is low rank also due to its column space, in absence
of background noise, since class histograms are shared across
images and therefore

∑
kNk < N+M . Additionally, it allows

for the observation that the appearance of individual classes
can be recovered from a multi-label dataset by estimating C.
In this paper, we assume that for localization purposes, each
class can be well represented by a single histogram. In this
case, (15) becomes YC = IK , and therefore our approach can
obtain an estimate of C by completing in Zobs the features
correspondent to the canonical labels (see Figure 3 (c)). By
directly estimating C, we are able to recover the appearance of
each class and thus provide the localization for each concept
in the images. This is done despite the weakly supervised
setting and bypassing the combinatorial nature of searching
for bounding boxes such as in MIL problems. Also, note that
this assumption is not used in the classification, where our
algorithm estimates class subspace dimensions automatically.

C. Nuclear norm as a convex surrogate of the rank function

Since the rank is a highly non-convex and non-differentiable
function, it is nontrivial to minimize. Therefore, we relax (10)
by using the convex envelope of the rank function, the nuclear
norm. Let Z = UΣV> be the SVD of Z. The nuclear
norm is defined as tr(Σ), the sum of singular values of Z.
It has been shown that under general assumptions of low
coherence of the singular vectors of Z, minimizers obtained
using the nuclear norm are equal to minimizers of rank with
high probability [15]. Therefore, we rewrite (10) as

minimize
Ytst,EY

tr,EX

‖Z‖∗ + λl(E)

subject to Z =




Ytr Ytst

Xtr Xtst

1>


−




Etr
Y 0
EX

0>



. (17)

We provide a simple intuition as to why this norm is in fact the
largest possible convex underestimator of the rank function:
Since the singular values of matrices are always positive, the
nuclear norm can be interpreted as an `1-norm of the singular
values. Under this interpretation, one can easily identify it as
the convex envelope of the rank function, since the latter is
the cardinality (or `0-norm) of the singular values.
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Fig. 4. Comparison of Nuclear and Frobenius norms as function of one
single unknown entry z2,3 for the matrix in (18).

1) Toy example: To understand why the singular value
sparsity induced by the nuclear norm is important for the
matrix completion in (17), consider completing a rank-1 matrix

Z =

[
1 1 1
1 1 ?

]
, (18)

where only one entry z2,3 is unknown. The results shown
in Figure 4 plot the nuclear norm and Frobenius norm of Z
for all possible completions in a range around the value that
minimizes its rank z2,3 = 1. In this case, the sparsity induced
by the nuclear norm (`1-norm on the singular values) yields
the optimal solution for Z with singular values σ = [2.4495 0],
a rank-1 matrix. In opposition, the Frobenius Norm (`2-norm
of singular values) will set the entries to zero, thus leading to
a solution with singular values σ = [2.1358 0.6622], a rank-2
matrix. This key difference can be attributed to the fact that
completing a matrix under the rank or nuclear norm favors
the interaction between rows and columns to find a global
solution, while the Frobenius norm treats each entry in the
matrix independently (recall that ‖Z‖2F =

∑
ij z

2
ij).

D. Adding robustness into matrix completion

In practical applications, we have several sources of errors
in the features (e.g., changes in pose, illumination, background
noise) and missing data in the training samples (e.g., missing
labels), which will translate into nonzero error matrices in
the models of (5) and (16). We account for these possible
violations by allowing the matrix Z in (17) to deviate from
the original data matrix. The resulting optimization problem
finds the best label assignment Ytst and error matrices EX =
[EXtr EXtst ] ,EY tr such that the rank of Z is minimized, as

minimize
Ytst,EY tr ,EX

µ‖Z‖∗ + lx(EX) + λly(Etr
Y )

subject to Z =




Ytr Ytst

Xtr Xtst

1>


−




Etr
Y 0
EX

0>


 .

(19)
Here, distortions of Z from known labels and features are
penalized according to ly(·) and lx(·), respectively. The pa-
rameters λ, µ are positive trade-off weights between better
feature adaptation and label error correction. We rewrite (19)

by defining sets ΩX and ΩY of known feature and label entries
and ZY ,ZX ,Z1 as the label, feature and last rows of Z, as

minimize
Z

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

lx(zij , z
obs
ij )

+
λ

|ΩY |
∑

ij∈ΩY

ly(zij , z
obs
ij )

subject to Z1 = 1>

, (20)

where the constraint that Z1 be equal to one is necessary for
dealing with the bias b in (3). The model in (20) can be solved
using Fixed Point Continuation [16], described in Sec. III-F.

In [46], lx(·) was defined as the least squares error and ly(·)
a log loss to emphasize the error on entries switching classes
as opposed to their absolute numerical difference. We note that
in this model (MC-1), the log loss in ly(·), albeit asymmetric,
incurs in unnecessary penalization of entries belonging to the
same class as the original entry.Therefore, we generalize this
loss to a smooth approximation of the Hinge loss, controlled
by a parameter γ. For labels {−1, 1}, we have

ly(zij , z
obs
ij ) =

1

γ
log(1 + exp (−γzobsij zij)), (21)

and for the case of labels {0, 1}, we have

ly(zij , z
obs
ij ) =

1

γ
log
(
1 + exp

(
−γ(2zobsij − 1)(zij − zobsij )

))
.

(22)
Also, in the bag of words model, visual data are encoded as
histograms. In this setting, (20) is inadequate as it introduces
negative values to the histograms in ZX . Thus, we replace the
least-squares penalty in lx(·) by a χ2 distance,

χ2(zj , zj0) =

F∑

i=1

χ2
i (zij , z

obs
ij ) =

F∑

i=1

(
zij − zobsij

)2

zij + zobsij
. (23)

and constrain all feature vectors to be positive (MC-Pos model)

minimize
Z

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

χ2
i (zij , z

obs
ij )

+
λ

|ΩY |
∑

ij∈ΩY

ly(zij , z
obs
ij )

subject to ZX ≥ 0

Z1 = 1>,

(24)

or in the Probability Simplex P (MC-Simplex model)

minimize
Z

µ‖Z‖∗ +
1

|ΩX |
∑

ij∈ΩX

χ2
i (zij , z

obs
ij )

+
λ

|ΩY |
∑

ij∈ΩY

ly(zij , z
obs
ij )

subject to ZX ∈ P
Z1 = 1>,

(25)

depending on whether we wish to perform normalization on
the data or not. Observe that (20) and (25) are both convex.
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E. Comparison to other subspace techniques
It is important to note that many standard dimensionality

reduction techniques such as PCA and LDA have been robus-
tified by using a nuclear norm penalization typically coupled
with an `1 error function [38], [49]. The differences and
similarities between the method presented in Section III-D and
these techniques can be analyzed if one interprets (24),(25) as
forms of PCA with missing data. Our method can be seen as
an extension of Robust PCA in two ways: 1) it includes labels
as additional “features” in the data samples 2) it penalizes
label and features errors with different losses lx and ly .

A comparison between the behavior of PCA, LDA,
RPCA [38], RLDA [49] and our method in the presence of
noise can be seen in Figure 5. We generated a two-class dataset
of 2, 000 500-dimensional vectors. The positive and negative
classes (resp.) have 1, 000 samples of the form −1500 and
1500 (resp.). We refer to this as clean data. The first two
principal components of this clean data are in Figure 5(a).
Then, we added to the clean data noise sampled from a Normal
distribution with zero mean and standard deviation 20I2×2. We
plot the two principal components data in Figure 5(b). Note
that PCA does not recover the underlying structure of the clean
data due to the significant amount of noise.

In this example, because the data does not have outliers
and the noise does not follow a Laplacian distribution, the `1
error function assumed by RPCA [38] is not able to clean the
noisy data (Figure 5(c)). Similarly, augmenting the space by
adding the labels as an additional dimension does not help
since for RPCA the errors in features and labels are weighted
equally. In both these cases, the output of RPCA (Figure 5(c))
is similar to the one obtained by regular PCA (Figure 5(b)).
LDA (Figure 5(d)) is able to find a projection which classifies
most of the points correctly. However, observe that it fails to
clean the data, which results in several misclassified points
on the class boundary. Our matrix completion approach, in
turn, balances a trade-off between correcting the data points,
correcting the labels and minimizing the rank. Therefore, it is
able to correct the feature data (Figure 5(e)) by giving more
weight to the information on the labels. This capability of
correcting the errors in features is only matched by our work
in Robust LDA [49], which achieved the result in Figure 5(f).
While this method has the advantage of obtaining an explicit
transformation from the feature to the label space, the matrix
completion has the ability to clean the test data during training.

F. Fixed Point Continuation (FPC) for MC-Pos/MC-Simplex
Albeit convex, the nuclear norm makes (24) and (25) not

smooth. Since nuclear norm problems are naturally cast as
Semidefinite Programs, existing interior point methods are
inapplicable due to the large dimension of Z. Thus, sev-
eral methods have been devised to efficiently optimize this
problem class [15], [16], [31]–[35]. The FPC method [16],
in particular, consists of a series of gradient descent updates
h(·) = I(·)− τg(·) with step size τ and gradient g(·) as

g(zij) =





λ
|ΩY |

−zobsij

1+exp (γzobsij zij)
if zij ∈ ΩY ,

1
|ΩX |

z2ij+2zijz
obs
ij −3zobsij

2

(zij+zobsij )2
if zij ∈ ΩX ,

(26)
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(b) PCA of noisy data
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(c) RPCA [38] of noisy data
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(e) PCA of MC-1 (λ = 100)
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(f) RLDA [49] of noisy data

Fig. 5. Comparison of results obtained for two-class classification of the
random dataset in III-E. The data error correction in Robust LDA (f) and
Matrix Completion (e) allow for recovery of the original data, when other
component analysis methods don’t.

and 0 otherwise. These steps are alternated with a shrinkage
operator Sν(·) = max (0, · − ν) on the singular values of
the resulting matrix, to minimize its rank. Provided h(·) is
non-expansive, FPC converges to the optimal solution for the
unconstrained problem. FPC was originally devised in [16]
for unconstrained problems and extended in [46] to solve the
formulation MC-1 (20) by adding a projection step. However,
its convergence was only empirically verified. In Appendix V,
we prove the convergence of FPC for (20), (24), (25) using
the fact that projections onto convex sets are non-expansive.

Key to the feasibility of FPC is an efficient way to project
Z onto the constraint sets in (24) and (25). While for MC-Pos
(24) the non-negative orthant projection is done in closed form
by setting negative components to zero, efficiently projecting
onto the probability simplex in MC-Simplex (25) is not
straightforward. We note, however, this is a projection onto
a convex subset of an `1 ball. Therefore, we can explore the
dual of the projection problem and use a sorting procedure to
implement this projection in closed form, as described in [17],
[50]. The algorithms are summarized in Alg. 1. We note
that the computational bottleneck is the computation of the
SVD of Z. State-of-the-art methods for SVD (e.g., Lanczos
bidiagonalization algorithm with partial reorthogonalization)
take a flop count of O((K +D+ 1)(M +N)2 + (M +N)3).
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Algorithm 1 FPC for MC-Pos (24) and MC-Simplex (25)
Input: Initial Matrix Zobs, known entries sets ΩX ,ΩY

Initialize Z as the rank-1 approximation of Zobs

for µ = µ1 > µ2 > · · · > µk do
while Rel. Error > ε do

Gradient Descent: A = Z− τg(Z)
Shrink 1: A = UΣV>

Shrink 2: Z = USτµ(Σ)V>

Project ZX : ZX = max (ZX ,0) for (24)
Project ZX onto the probability simplex P for (25)
Project Z1: Z1 = 1>

end while
end for

Output: Complete Matrix Z

IV. EXPERIMENTS

This section presents the performance evaluation of the
proposed algorithms MC-Pos (24) and MC-Simplex (25) in
several tasks. In the first experiment (Sec. IV-B), we validated
the low rank assumption of Sec. III-B using two multi-
label datasets, MSRC2 and SIFTFlow [51]. In the second
experiment (Sec. IV-C), we evaluated the classification per-
formance and the localization abilities of our method on the
CMU-Face dataset [4] (a single-class problem). In the third
experiment, we evaluated the performance of our method
for multi-label classification (Sec. IV-D) in the MSRC and
PASCAL VOC2007 datasets. We also perform an experiment
for localization (Sec. IV-E) in MSRC. We compared our
methods with MC-1 (20), an SVM baseline, and several state-
of-the-art MIL approaches [4], [9]–[11], [25], [26], [52].

A. Parameters

For MC-Pos, MC-Simplex and MC-1, the values considered
for parameter tuning were γ ∈ [1, 30], λ ∈ [10−4, 102]. The
continuation steps require a decreasing sequence of µ, which
we chose as µk = 0.25µk−1, stopping when µ = 10−9. We
used µ0 = 0.25σ1, where σ1 is the largest singular value
of Zobs, with unknown entries set to zero. Convergence was
defined as a relative change in the objective function smaller
than 10−2. In a transduction setting, since the task is to classify
an already known test set, one could choose the parameters
which perform best on the final test set. However, to be fair to
other baselines, we tuned the parameters in a cross validation
setting. As such, the results reported are for the choice of
parameters which, from the aforementioned ranges, yielded
the best average result on all the validation sets provided by
cross-validation. The results reported for the SVM baselines
were obtained using libSVM, with parameter C ∈ [10−6, 106].

B. Low rank assumption validation

In this experiment, we empirically validated the assumption
in (16) that histograms of objects of the same class share
a low-dimensional subspace. We constructed a bag of words
representation for the MSRC dataset, which consists of 591

2http://research.microsoft.com/en-us/projects/objectclassrecognition/
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Fig. 6. Comparison of singular value distribution of matrices X1 with
histograms of the same class (solid) versus corresponding matrices X2 of
the same dimension with an equal amount of histograms from all classes
(dashed) for different classes on the MSRC dataset.

real world images distributed among 21 classes, with an
average of 3 classes present per image. We mimicked the
setup of [10], [11] and dismissed the classes void, mountain
and horse. To obtain a bag of words (BOW) descriptor,
we clustered texton filter responses [53] obtained from all
three CIELab color channels into a codebook by applying
k-means to a random subset of 40, 000 descriptors. In this
model [14], images are encoded as histograms representing the
distribution of the 400 words from the codebook. Then, using
the ground truth segmentation labeling, we collected feature
matrices X1 by concatenating all the histograms of the same
class. We compared these with feature matrices X2 of the
same dimension with an equal amount of elements from all
classes (including elements from the class of X1). In order
to compare the singular value distribution of these matrices,
we normalized them so columns have unit `2 norm. Then, we
measured their nuclear norm ratio (NNR), defined as

NNR(X1,X2) =
‖X1‖∗
‖X2‖∗

. (27)

This measure provides an empirical validation of our assump-
tion and is linked to what our model is optimizing and is
an indirect measure of the rank of a matrix, as explained in
Sec. III-C. Results on Table I(a) show that for all classes in
the MSRC dataset, we obtained a NNR lower than 1. An
assignment of test entries to incorrect class labels yields a
higher nuclear norm of Z, thus validating our model. For
visualization, we plot the singular value distribution of X1 and
corresponding X2 for some classes in the dataset (Figure 6).

It might be argued that explanation of (16) only holds
when the columns dominate the estimate of the rank, i.e.,
rank(

[
Xtr Xtst

]
) ≤ N +M ≤ F . However, we also val-

idated this hypothesis in the case when the feature dimension
F is smaller than the number of images N+M in the dataset.
Since there are only 591 images in the MSRC dataset and some
classes exhibit a small number of exemplars, we validated this
assumption in the larger scale SIFTFlow dataset [51]. This
dataset is a collection of 2, 688 images distributed among 33
classes. Following [51], we extracted a dense HoG feature
map [54] from every image in the dataset and built a BoW
codebook of 200 words. We collected the histograms for all the
25, 758 ground truth segments in the dataset according to their
class label. Then, we calculated the distribution of singular
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TABLE I
NUCLEAR NORM RATIOS (NNR) FOR ALL CLASSES IN THE MSRC

DATASET (A) AND FOR ALL CLASSES WHICH HAVE MORE THAN 200
SEGMENTS IN THE SIFTFLOW DATASET (B).

(a) MSRC dataset.
Class NNR

building 0.8595
grass 0.6987
tree 0.8325
cow 0.9092

sheep 0.7653
sky 0.4530

aeroplane 0.7831
water 0.8224
face 0.6622
car 0.8392

bicycle 0.6525
flower 0.8741
sign 0.9491
bird 0.8793
book 0.9217
chair 0.9397
road 0.7070
cat 0.8402
dog 0.8420
body 0.9465
boat 0.9123

(b) SIFTflow dataset.
Class NNR

building 0.9074
tree 0.8620
car 0.8989
sky 0.8455

window 0.7513
mountain 0.8657

road 0.8568
person 0.8673
plant 0.8655

sidewalk 0.9038
rock 0.8728
door 0.6554
sea 0.6073

field 0.7719
sign 0.9098
grass 0.8181

streetlight 0.9439
river 0.8719

balcony 0.7458

values for matrices X1 as aforementioned, for all classes
with more than 200 samples in the dataset. We compared
the NNR of the matrices X1 with matrices X2 of the same
dimension comprised by an equal amount of elements from all
classes. Results in Table I(b) corroborate the MSRC dataset
results, showing our assumption is also valid when the feature
dimensions are smaller than the number of images.

C. Classification and localization on a two-class problem

In this experiment, we tested the classification performance
of our method in a two-class classification problem. We
used the CMU Face dataset [55], which consists of 624
images of 20 subjects. All subjects are captured with varying
expression and poses, with and without sunglasses. Figure 7
shows examples of our positive (wearing sunglasses) and
negative class (not wearing sunglasses). We have two goals:
First, we want to build a classifier that, given a new face
image, determines whether the subject is wearing sunglasses
or not. Second, Nguyen et al. [4] argue that better results
are obtained when the classifier training is restricted to the
region that has the discriminative information (e.g., the glasses
region in this case). They propose using a Multiple Instance
Learning framework (MIL-SegSVM) that localizes the most
discriminative region in each image while learning a classifier
to discriminate between classes. We show how our method is
also able to estimate the histogram of the discriminative region
(i.e., sunglasses) and localize it in the training and test set.

To allow for direct comparison, we used the setup and
features of [4]: Our training set is built using images of the
first 8 subjects (126 images with sunglasses and 128 without),
leaving the remainder for testing (370, equally split among
the positive and negative classes). We represented each image
with the BoW model by extracting 10, 000 SIFT features [56]
at random scales and positions and quantizing them onto a

(a) (b)

Fig. 7. Example images of the CMU-Face dataset. (a) shows the positive
class (wearing sunglasses) and (b) shows the negative class (no sunglasses).

1, 000 visual codebook, obtained by performing hierarchical
k-means clustering on 100, 000 features randomly selected
from the training set. For the first part of the experiment, we
compared the results of our classifier to what is obtained using
several methods: (1) SVM-Img: a Support Vector Machine
(SVM) trained using the entire image, (2) SVM-Region: an
SVM trained using a manually labeled discriminative region
(in this case, the region of the glasses), (3) MIL-SegSVM: a
MIL SVM method proposed by [4]. For MC-1, MC-Pos and
MC-Simplex, we proceeded as follows: we built Z with the
label vector and the BoW histograms of each entire image and
left the test set labels Ytst as unknown entries. For the MC-
Simplex case, we further preprocessed Z by dividing each
histogram in ZX by its sum. This was done to avoid the
Simplex projection step in Alg. 1 picking a single bin and
zeroing out the others, due to scale disparities in the bin counts.

The performance, measured using the area under ROC curve
(AUROC), is shown in Table II. These results indicate both
the fully supervised (SVM-FS) and the MIL approach (MIL-
SegSVM) are more robust to the noise introduced by non-
discriminative parts of the images, when compared to training
without localization (SVM-Img). However, this is done at
either the cost of cumbersome labeling efforts or by iteratively
approximating the solution of the MIL problem, an integer
quadratic problem. The matrix completion approaches (MC-
1, MC-Pos, MC-Simplex), in turn, are able to surpass these
classification scores by solving a convex minimization.

Beyond improving the classification performance, our algo-
rithm is able to localize the discriminative region of interest
(the sunglasses region, in this dataset). Recall that the error EX

removes the portion of the histogram introduced by the non-
discriminative regions of the image. To illustrate this property,
after we run the matrix completion classification, we obtain
the most discriminative bounding box for all images in the
dataset. For each image i in the dataset, we searched for the
bounding box that best matches the features of the i-th column
of the completed matrix zX

i = hi − eX
i (recall Figure 3).

We use a sliding window detector varying scale and position
using the size criteria in [4] and measure similarity using the
χ2 distance. The results are shown in Figure 8 for MC-Pos
(similar results were obtained with MC-Simplex). Similarly
to MIL-SegSVM, which used a linear SVM score for the
subwindow search, our methods correctly localized the eyes
region, that discriminates between the classes. Note that MC-1
does not allow to pursue localization of the class representative
since it may introduce negative numbers in the histograms.
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Fig. 8. A sliding window search shows that histograms corrected by MC-Pos
(24) are most similar to the discriminative region of the eyes in the images.

TABLE II
AUROC RESULT COMPARISON FOR THE CMU FACE DATASET.

Method AUROC
SVM-Img [4] 0.90
SVM-FS [4] 0.94

MIL-SegSVM [4] 0.96
MC-1 [46] 0.96

MC-Pos 0.97
MC-Simplex 0.96

D. Classification in multi-label datasets

In this experiment, we ran our method on two multi-label
datasets: MSRC and PASCAL VOC 2007. The MSRC dataset
consists of 591 photos distributed among 21 classes, with an
average of 3 classes present per image. We mimicked the setup
of [10], [11] and used as features histograms of textons [53].
Then, we obtained a 400 word codebook by applying k-means
clustering to a random subset of 40, 000 descriptors.

In this task, all training images are labeled with one or
several classes, and the goal is to label the test images. Observe
that the test image can have several labels (i.e., multi-label
classification). We proceeded as in the experiment described
in Sec. IV-C. We compared MC-Pos and MC-Simplex with
MC-1 and several state-of-the-art multi-label MIL approaches:
Multiple Set Kernel MIL (MSK-MIL) by Vijayanarasimhan
and Grauman [11], Multi-label Multiple Instance Learning
(ML-MIL) by Zha et al. [10], Discriminative Multiple Instance
Multiple Label model by Yakhnenko and Honavar [26]. We
also compared to a one-vs-all linear SVM.

The obtained average AUROC classification scores on the
test set using 5-fold cross validation are shown in Table III(a).
Results show that our methods outperformed MC-1, thus
showing the improvement introduced by the additional con-
straints and improved loss functions. Moreover, they out-
performed results given by state-of-the-art MIL techniques,
including the non-linear classifier MSK-MIL. This can be
explained by the fact that MIL methods work by selecting
regions from images to be the positive examples for a class
while learning that class boundary. Since possible regions are
enumerated by a segmentation algorithm, it is not guaranteed
that they match exactly the ground truth segmentation. The
feature error correction in MC-Pos and MC-Simplex does not
require this segmentation step and thus allows for superior
results in this weakly supervised multi-label scenario.

We also tested our method in the PASCAL VOC 2007
dataset. This dataset consists of 9963 images labeled with
at least one of 20 classes, split into trainval and test
sets. We used the same features as the winning approach
(INRIA_Genetic) [2]. This method achieved a mean average
precision (mAP) of 0.594. Given that it is a fusion method, we

TABLE III
5-FOLD CROSS VALIDATION AVERAGE AUROC COMPARISON FOR THE

IMAGE AND LABELING TASKS ON MSRC (A) AND CLASSIFICATION TASK
RESULTS (B) IN THE VOC 2007 DATASET.

(a) MSRC Image labeling
Method Image

MSK-MIL [11] 0.90
ML-MIL [10] 0.90

DMIML-`2 [26] 0.91
MC-1 [46] 0.91

MC-Pos 0.95
MC-Simplex 0.92
Linear SVM 0.89

(b) PASCAL VOC 2007
Method mAP

INRIA_Genetic 0.594
MC-1 [46] 0.426

MC-Pos 0.617
MC-Simplex 0.713
Linear SVM 0.416

followed its simplest feature setting (reported to yield mAP of
0.477) and represented each image by extracting dense SIFT
features [56] and quantizing them onto a 4, 000 dimension
codebook, built by k-means clustering on 100, 000 features
randomly selected from the training set. We used this code-
book to code images as histograms, which we `1 normalized.
Results in Table III(b) show increased performance for the
same features, demonstrating the power of transduction having
access to the test set statistics. To confirm this, we further
explored a transduction setting, by tuning parameters on the
test set. Here, whilst SVM gets an mAP of 0.4966, MC-
1/Pos/Simplex yield 0.952, 1.000 and 0.992 respectively. This
is only achievable by an SVM if training is done with the test
set. Our approach, however, only requires its features.

E. Localization in a multi-label dataset

While our method is able to competitively classify pre-
segmented images, when compared to the state-of-the-art, in
this section, we propose an alternative exploratory paradigm
for the association of labels to regions in the image. The
purpose of the method presented herein is not to provide
competitive state-of-the-art results for semantic segmentation,
but merely to build a working prototype that builds on the
histogram representatives naturally obtained by our method,
and discuss its advantages and current limitations. Recall
that in the single-class example of Sec. IV-C, we used each
corrected histogram in the training and test set to localize the
bounding box containing the most discriminative region. In the
multi-label case, however, several classes coexist in one image.
Since corrected histograms contain a mixture of classes, they
can’t be used for class localization in the images.

One possible approach to solve this problem is to pre-
segment the test images and use the learned class models to
classify each region individually. However, this approach has
several drawbacks: 1) having to select a fixed number of seg-
ments, 2) the segments are obtained through only texture and
color cues, so they might not match the ground truth regions of
the classes, and 3) contextual information between segments is
lost, which results in poorer classification performance when
compared to the classifiers learned on the entire image.

We propose an alternative method that does not suffer
from these drawbacks, by explicitly recovering representative
histograms for each class. We proceeded as in IV-D, but
padded the matrix Z with 21 extra columns where the labels
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(c) Over-segmentation

(d) Efficient Region Search (ERS)

(b) Class representative

(a) Input image

Fig. 9. Illustration of our proposed method for class localization with Matrix
Completion.

are the identity and the features are unknown, to recover one
representative histogram per class (see Figure 3(c)). Observe
that we do not require segmentation for this classification. For
each class in an image (Figure 9 (a)), we plot a heatmap of
which words belong to the class using its respective histogram
(Figure 9(b)). Then, we oversegmented each image using the
hierarchical segmentation of Arbelaez et al. [58] (Figure 9(c)).
We used code provided by the authors and set the parameter
boundary segmentation scale to k = 0.1. Last, in order to
get the localization for a class in an image, we used the
class histograms and the obtained segments for that image
as the input to the Efficient Region Search (ERS) method of
Vijayanarasimhan and Grauman [59]. ERS selects a group of
connected segments (Figure 9(d) that maximizes a detection
score as measured by an SVM classifier. Since the output of
our algorithm is a probability map, we emulated the SVM
weight vector by using the class representative subtracted by
its mean. We show qualitative results of this approach on
Figure 10 for independent recovery of classes in the same
image. The failures of our approach can be generally attributed
to one of two cases: class confusion in both the classification
and the fact that ERS is applied individually to each class
(Figure 12(a)); the fact that the solution obtained by ERS is
by design a single contiguous region (Figure 12(b)).

V. PROOF OF CONVERGENCE OF MC-1/POS/SIMPLEX

This appendix proves the convergence of FPC in Alg. 1 by
the fact that projections onto Convex sets are non-expansive;
thus, the composition of gradient, shrinkage and projection
steps is also non-expansive. Since the problem is convex, a
unique fixed point exists in its optimal solution.

Lemma 1: The gradient operator h(·) for (21), (22), (23) is
non-expansive for step sizes τ ∈ [0,min ( 4|ΩY |

λγ , τX |ΩX |)].
Proof: These values are obtained from (26) by noting the

gradient of the Log loss function is Lipschitz continuous with
L = 0.25 and choosing τX such that the χ2 error, for the
Non-Negative Orthant, is Lipschitz continuous with L = 1.
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Fig. 10. Histograms corrected by our method in the MSRC dataset preserve
semantic meaning. The input image is shown in (a). The heatmap generated by
the class representative histogram is shown in (b). ERS [59] uses the heatmap
in (b) and the over segmentation in (c) to produce the segmentation in (d).
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Fig. 11. Multi-label segmentation results on the MSRC dataset.
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Cow

Sky

Grass

(a) Class confusion and ERS is not multi-label. Top: Sky,
Middle: Grass, Bottom: Cow

Thin objects

ERS selects contiguous regions

(b) ERS result is a contiguous region

Fig. 12. Multi-label segmentation failure cases. Left: Original Image. Middle:
Heatmap generated by the class representative histogram. Right: Segmentation
obtained by ERS with class representatives.

Lemma 2: Let pC(·) be a projection operator onto any
given convex set C. It follows that pC(·) is non-expansive and
‖pC(Z)−pC(Z∗)‖ = ‖Z−Z∗‖ iff pC(Z)−pC(Z∗) = Z−Z∗.

Proof: For non-expansiveness, [60, Prop. 3.1.3] states that

‖pC(Z)− pC(Z∗)‖2F ≤ 〈pC(Z)− pC(Z∗),Z− Z∗〉. (28)

Applying the Cauchy-Schwarz inequality to (28) yields

‖pC(Z)− pC(Z∗)‖F ≤ ‖Z− Z∗‖F . (29)

For the equivalence part, let us write

‖pC(Z)− pC(Z∗)− (Z− Z∗) ‖2F =

‖pC(Z)− pC(Z∗)‖2F + ‖Z− Z∗‖2F (30)
−2〈pC(Z)− pC(Z∗),Z− Z∗〉,

where the inner product can be bounded by (28), yielding

‖pC(Z)− pC(Z∗)− (Z− Z∗) ‖2F ≤ ‖pC(Z)− pC(Z∗)‖2F
(31)

+‖Z− Z∗‖2F − 2‖pC(Z)− pC(Z∗)‖2F .

Since our hypothesis ‖pC(Z)− pC(Z∗)‖ = ‖Z− Z∗‖, (31) is

‖pC(Z)− pC(Z∗)− (Z− Z∗) ‖2F ≤ 0, (32)

from which we conclude an equality is in place.
Theorem 3: Let Z∗ be an optimal solution to (24) or (25).

Then Z is also an optimal solution if

‖pC(Sν(h(Z)))− pC(Sν(h(Z∗)))‖ = ‖Z− Z∗‖. (33)

Proof: By non-expansiveness of operators pC(·), Sν(·)
and h(·) (Lemma 2 and [16, Lemmas 1,2]), we can write

‖Z− Z∗‖ = ‖pC(Sν(h(Z)))− pC(Sν(h(Z∗)))‖ ≤
≤ ‖Sν(h(Z))− Sν(h(Z∗))‖ ≤ (34)

≤ ‖h(Z)− h(Z∗))‖ ≤ ‖Z− Z∗‖,
so we conclude the inequalities are equalities. Using the
second part of the Lemmas, we get

pC(Sν(h(Z∗)))− pC(Sν(h(Z))) =

= Sν(h(Z∗))− Sν(h(Z)) = h(Z∗)− h(Z) = Z− Z∗.

Since Z∗ is optimal, by the projected subgradient method
and [16, Corollary 1], we have that

pC(Sν(h(Z∗))) = Z∗ =⇒ pC(Sν(h(Z))) = Z, (35)

from which we conclude Z is an optimal solution to (20).
Theorem 4: A sequence {Zk} generated by Alg. 1 con-

verges to Z∗, an optimal solution of (24) ((25), resp.).
Proof: We can use the same rationale as in [16, Theorem

4], once we note the non-expansiveness of pC(·), Sν(·) and
h(·) ensures the composite operator pC(Sν(h(·))) is also non-
expansive. Therefore, the sequence {Zk} lies in a compact
set and must have a limit point, which we define as Ẑ =
limk→∞ Zk. Also, for any solution Z∗ ∈ Z∗, we have

‖Zk+1 − Z∗‖ = ‖pC(Sν(h(Zk)))− pC(Sν(h(Z∗)))‖ ≤
≤ ‖Sν(h(Zk))− Sν(h(Z∗))‖ ≤

(36)

≤ ‖h(Zk)− h(Z∗))‖ ≤ ‖Zk − Z∗‖,
so we conclude the sequence {‖Zk − Z∗‖} is monotonically
non-increasing and culminates in any limit point Ẑ, i.e.,

lim
k→∞

‖Zk − Z∗‖ = ‖Ẑ− Z∗‖. (37)

On the other hand, by the continuity of pC(Sν(h(·))), we
have that the image of Ẑ is

pC(Sν(h(Ẑ))) = lim
k→∞

pC(Sν(h(Zk))) = lim
k→∞

Zk = Ẑ (38)

is also a limit point of {Zk}, yielding

‖pC(Sν(h(Ẑ)))− pC(Sν(h(Z∗)))‖ = ‖Ẑ− Z∗‖, (39)

from which we can recall Theorem 3.

VI. CONCLUSIONS AND FUTURE WORK

Weakly supervised learning algorithms allow for learning
image classification models without recurring to labeling ef-
forts based on bounding boxes or full-blown pixelwise seg-
mentations. It has been shown that these labeling efforts are
not only expensive, but subjective and error prone. Thus, the
importance of reducing manual labeling from region labeling
to image labeling is critical for the applicability of image
classification methods, especially in large scale datasets with
many classes. Limitations of existing MIL approaches include
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their non-convexity and reliance on an explicit enumeration of
possible regions given by a segmentation algorithm.

A key idea of our method is that histograms of full images
contain the information for parts contained therein, so the
weakly supervised learning problem can be formulated as
a blind source separation problem, solved using a matrix
completion framework. Three are the main benefits of our
approach: First, unlike existing MIL approaches to weakly-
supervised learning, we presented two new convex methods for
performing multi-label classification of histogram data, with
proven convergence properties. Second, unlike the majority of
existing classifiers, we showed that matrix completion allows
for handling of missing data, labeling errors, background
noise and partial occlusions. Third, we were able to find
class histogram representations and provide localization in the
images. This is done despite of the weakly-supervised training
set, where class locations are unknown.

Experiments show that our convex methods perform com-
parably or better than state-of-the-art MIL methods in several
image datasets. Our feature error correction provides superior
results for weakly supervised multi-label classification, when
compared to explicitly enumerating possible regions in the im-
age using segmentation algorithms or bounding box localiza-
tion. When annotating individual regions, our method was only
surpassed by a non-linear MIL method. Error correction also
allows to perform localization of the discriminative regions
of the image in a single class problem. Class representative
histograms allow for class localization in multi-label problems.

We note that our approach is not a full replacement for MIL,
since in other settings features may not respect the low rank
assumptions in Section III. Despite not requiring segmentation
for classification, our approach has the limitation of only
capturing one representative histogram per class (Figure 3 (a)).
Future work should address the extension of this framework to
allow for the use of representative subspaces. As an extension
of a component analysis technique, this work should be
kernelized, to couple the feature error correction and the use
of non-linear techniques into a single technique.
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