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ABSTRACT
The analysis of images taken from cultural heritage artifacts is an
emerging area of research in the field of information retrieval. Cur-
rent methodologies are focused on the analysis of digital images of
paintings for the tasks of forgery detection and style recognition.
In this paper, we introduce a graph-based method for the automatic
annotation and retrieval of digital images of art prints. Such method
can help art historians analyze printed art works using an annotated
database of digital images of art prints. The main challengelies
in the fact that art prints generally have limited visual informa-
tion. The results show that our approach produces better results
in a weakly annotated database of art prints in terms of annotation
and retrieval performance compared to state-of-the-art approaches
based on bag of visual words.
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trieval|Retrieval models I.4.8Image Processing and Computer Vi-
sionScene Analysis|Object Recognition G.3Probability and Statis-
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General Terms
Algorithms, Measurement, Experimentation

Keywords
Content-based image retrieval and annotation, Art image annota-
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1. INTRODUCTION
The analysis of digital images taken from artistic productions

is a emerging field of research in the areas of information retrieval,
computer vision, digital image analysis and machine learning. There
are several applications being developed in this area, suchas: the
system designed by Google to identify paintings [1]; the artistic
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Figure 1: Examples of how art print images (left) are alteredin
the process of becoming a tile panel (right).

identification methodologies designed to classify Van Gogh’s brush
strokes [27]; the model to classify brushstrokes [48]; and the ap-
proach to discover, recover, represent and understand cultural her-
itage artifacts [21]. Therefore, the techniques developedin this area
will be an essential tool for systems designed to help art historians
in the task of analyzing art production.

The analysis of digital images of prints is particularly important
for art historians because printmaking methods have been inten-
sively used over the last five centuries with the goal of replicat-
ing paintings produced by artists from all over the world. This
intense use of printmaking techniques is associated with the the
fast and cheap production of paper and advancements in graphi-
cal arts, which started in the XVth century. As a result, prints of
artistic paintings have reached a vastly superior number ofpeople
compared to the original paintings. Consequently it is worth under-
standing the importance of art prints in art history since they have
influenced and served as a source of inspiration for generations of
artists. Therefore, the proper classification, retrieval and annota-
tion of art prints constitute an important activity for art historians
to understand the art produced in the last five centuries.

The influence of prints on visual arts can be evidenced in several
artistic productions, such as the influence of Japanese art prints on
impressionist artists in the XIXth century [3]. More relevant to our
work is the influence of prints on artistic tile painters in Portugal [9,
12], as evidenced by the large number of panels found in Churches,
public buildings and palaces. In the context of artistic tile panels,
the analysis of digital images of prints is extremely important for
understanding how the Portuguese tile panel artists were influenced



Figure 2: Loss of visual information from the photographic im-
age in (a), to the painting in (b), to the art print in (c).

Figure 3: Example of the manual annotation of an art print
image produced by an art historian.

by such prints, which has the potential to furnish relevant informa-
tion to art historians in Portugal. It is important to mention that art
prints were generally used as references to produce the panels, but
the artists often produced an impression of the print (i.e.,not an
exact copy of it - see Fig. 1). For this reason, the task of discov-
ering the influence of one or several prints in the composition of
a tile panel requires an expert with a specialized visual knowledge
of the current databases of prints together with peculiar abilities
in relating the tile composition with the prints. Therefore, an au-
tomatic system that can retrieve a set of print images related to a
given artistic work can can be useful for art historians.

Compared to photographic digital images and paintings, artprint
images loses important visual information [11]. For example, Fig. 2
shows three images of the themethe Crucifixion of Jesus Christ,
which displays a large sensorial gap [40] between the photographic,
painting and art print images. Notice how the low level information
(texture, color, depth, etc.) is lost moving from the photographic
image to the art print image. This loss of visual informationre-
duces the effectiveness of current image analysis techniques, which
usually work with photographic digital images [14]. Art image
analysis methodologies can also be used for art prints [42, 27], but
the great majority of these techniques have been developed for the
analysis of digitized images of paintings, which contain richer vi-
sual information than prints. However, note that Li and Wang[29]
have developed a system that analyzes ancient Chinese paintings,
which are similar to art prints.

In this work, we present a new method for the analysis of art
prints. The first goal of the work is to automatically produceglobal
annotations to previously unseen test images using a statistical model
whose parameters are estimated using a database of manuallyanno-
tated training images. The second goal is to retrieve un-annotated

images given specific visual classes using the statistical model de-
scribed above. The art print images in this database are constrained
in the following ways: 1) they were created between the centuries
XV and XVII, and 2) they are of religious themes. These con-
straints are relevant for discovering the influences suffered by artis-
tic tile panel painters, which is the long-term goal of this project.
The manual annotation (Fig. 3) has been produced by art historians,
who identified the image theme and the relevant subjects present in
the print (weak annotation without relation between subjects and
image regions). The method proposed in this paper follows graph-
based learning algorithms, which have the assumption that the vi-
sually similar images are likely to share the same annotations [50].
Note that this assumption is important to uncover the aforemen-
tioned influence of art prints over other artistic productions (and
also over other art prints). Specifically, we explore the following
graph-based algorithms [6, 35, 50]: label propagation [18,28, 34,
46], random walk [11], stationary solution using a stochastic ma-
trix [30], and combinatorial harmonic [19]. We adapt each ofthose
techniques to a bag of visual words (BOV) approach, and we com-
pare their performance with BOV approaches that use the follow-
ing classifiers: support vector machines (SVM) [45], and random
forests (RF) [7]. Note that BOV approaches with these two clas-
sifiers can be regarded as the state-of-the-art methods for image
retrieval and annotation. The experimental setup uses a database
of art prints (which will soon be available for the information re-
trieval and computer vision communities) containing 307 images
and 22 labels, where one label represents a multi-class problem
with 7 classes, and the other labels represent binary problems. The
results show that graph-based methods produce better results than
BOV models (using SVM and RF classifiers) in terms of retrieval
and annotation performance.

This paper is organized as follows. Section 2 introduces relevant
works in photographic and art image retrieval, and graph-based
learning. Section 3 describes the proposed methodology, while
Sec. 4 outlines the implementation of our approach. The experi-
ments are presented in Sec. 5, and the paper is concluded in Sec. 6.

2. LITERATURE REVIEW
In this section, we provide a brief review of papers in the areas

of photographic and art image retrieval and annotation. We also
review a few relevant graph-based learning methods.

Currently in photographic image retrieval and annotation,the
most successful methods [15] are based on the the bag of visual
words representation [13] combined with SVM [45] or multiple
kernel learning (MKL) classifiers [41]. This methodology iseffec-
tive when the number of visual classes is relatively small (faster
training and inference procedures) and the number of training im-
ages per class is relatively large (better generalization). Another
constraint of this methodology is that the introduction of new im-
ages and new labels require a full (re-)training of relevantclassi-
fiers. Unfortunately, both constraints are too restrictivefor our case
where the number of visual classes can be large (with a limited
number of training images per class), and the introduction of new
images and labels to the database can happen frequently. In photo-
graphic image analysis, there is a trend to get around the problem of
the high number of visual classes with the use of machine learning
methods that finds a sub-space of smaller dimensionality forclassi-
fication [23]. However, the dynamic nature of our problem, where
new classes are regularly introduced into the training database, is
still an issue in this area of research.

The area of art image retrieval has attracted the attention of re-
searchers in the fields of computer vision and machine learning [27,
33, 42]. The main focus of the papers is on the artistic identifica-
tion problem, where the goal is to classify original and fakepaint-



ings of a given artist [4, 32, 39] or to produce stylistic analysis
of paintings [20, 24, 25]. Most of the methods above can be re-
garded as adaptations from the content-based image retrieval sys-
tems [14], where the emphasis is placed on the characterization of
brush strokes using texture or color. The ancient Chinese paint-
ing classification studied by Li and Wang [29] is more similarto
ours in the sense that they deal with the multi-class classification
of painting styles. Finally, the work on the automatic brushwork
annotation by Yelizaveta et al. [48] is also similar to ours given
that the authors are dealing with multi-class classification of brush
strokes. Different from the papers above, our method addresses not
only a multi-class, but also a multi-label problem [16].

Graph-based learning has been thoroughly studied by the infor-
mation retrieval community to rank web pages on the World Wide
Web [6, 8, 35]. Essentially, a graph is built where vertexes repre-
sent web pages and the edge weights are denoted by the existence
of hyper-links. Analysis algorithms based on random walks in this
graph have been designed to rank the vertexes (i.e., web pages) in
terms of their importance in this network. These graph-based tech-
niques have received considerable attention by the machinelearn-
ing community for the problem of semi-supervised learning [50].
The random walk algorithm has also been studied in the domains
of unsupervised image segmentation [19] and multi-class classifi-
cation [43]. Finally, random walk algorithms have also beenex-
plored in the area of image retrieval [11, 18, 22, 26, 28, 30, 34, 46],
where the main advantages of such approaches are: 1) the ability
to use visual and non-visual cues in the random walk procedure,
2) the potential to extend the method to large-scale databases, and
3) the relatively facility to adapt the method to dynamic problems,
where new images and labels are continuously introduced into the
database.

3. METHODOLOGY
Assume that a training set of annotated images is available,and

is represented as follows:D = {(Ii,xi,yi)}i=1..N with xi rep-
resenting the feature vector of imageIi andyi denoting the anno-
tation of that image. An annotated test set is also availableand is
represented byT = {(eIi, exi, eyi)}i=1..P , but note that the anno-
tation in the test set is used only for the purpose of methodology
evaluation. Each annotationy representsL multi-class and binary
problems, soy = [y1, ..., yL] ∈ {0, 1}M , where each problem
is denoted byyl ∈ {0, 1}|yl| (with |yl| denoting the dimension-
ality of yl, where binary problems have|yl| = 1, and multi-class
problems have|yl| > 1 and‖yl‖1 = 1), andM represents the
dimensionality of the annotation vector (i.e.,

PL

l=1 |yl| = M ). In
summary, binary problems involve an annotation that indicates the
presence or absence of a class, while multi-class annotation regards
problems that one (and only one) of the possible classes is present.

Following the notation introduced by Estrada et al. [17], who ap-
plied random walk algorithms for the problem of image de-noising,
let us define a random walk sequence ofk steps as
Tr,k = [(x(r,1),y(r,1)), ..., (x(r,k),y(r,k))], where eachx(r,l) be-
longs to the training setD, andr indexes a specific random walk.
Our goal is to estimate the probability of annotationy for a test
imageex, as follows [43]:

p(y|ex) =
1

ZT

RX

r=1

KX

k=1

p(Tr,k|ex)
1

k p(y|x(r,k)). (1)

In (1), ZT is a normalization factor,p(y|x(r,k)) = δ(y − y(r,k))
(with δ(.) being the Dirac delta function, which means that this
term is one wheny = y(r,k)), the exponent1

k
means that steps

taken at later stages of the random walk have higher weight,

p(Tr,k|ex) =p([(x(r,1), y(r,1)), ..., (x(r,k),y(r,k))]|ex)

=

kY

j=2

p(x(r,j)|x(r,j−1), ex)p(y(r,j)|y(r,j−1))

p(x(r,1)|ex)p(y(r,1))

(2)

with the derivation made assuming a Markov process and that the
training labels and features are independent given the testimage,
p(y(r,j)|y(r,j−1)) = sy(y(r,j),y(r,j−1)) with sy(y(r,j),y(r,j−1)) =
1

Zy

PM

m=1 λm × y(r,j)(m) × y(r,j−1)(m) (λm is the weight as-

sociated with the labely(m) ∈ {0, 1} andZy is a normalization
factor),p(y(r,1)) = 1

N
, andp(x(r,j)|x(r,j−1), ex) andp(x(r,1)|ex)

are defined in Sec. 4.2.
We propose the use of class mass normalization [51] to deter-

mine the annotation of imageex. The class mass normalization
takes into consideration the probability of a class annotation and
the proportion of samples annotated with that class in the training
set. Specifically, we have

by =

"
NX

i=1

yi(m) × max(p(yi(m)|ex) − p(y(m)),0)

#

m=1..M

,

(3)
wherep(y(m)) = 1

N

PN

i=1 yi(m) (m indicates themth dimen-
sion of label vectory). The use of class mass normalization makes
the annotation process more robust to imbalances in the training
set with respect to the number of training images per visual class.
Notice thatby in (3) represents the confidence that the image repre-
sented byex is annotated with the labelsby(m) for m = {1, .., M}.
Finally, we further processby for multi-class problems as follows:

∀l ∈ {1, ..., L}, with |byl| > 1

y
∗
l =


min(⌊byl/max(byl)⌋, 1), if max(byl) > 0.5

{0}|yl |, otherwise

, (4)

and for binary problems we define:

∀l ∈ {1, ..., L}, with |byl| = 1

y
∗
l =


1, byl > 0.5

0, otherwise

. (5)

As a result, the final annotation for imageex is represented byy∗ =
[y∗

1 , ..., y∗
L].

The retrieval problem is defined as the most relevant image re-
turned from the database of test imagesT given themth visual
classy(m) for m ∈ {1, ..., M}, as in:

x
∗
y(m) = max

ex∈T
p(ex|y(m)), (6)

wherep(ex|y(m)) = p(y(m)|ex)p(ex)/p(y(m)) with p(ex) = constant
andp(y(m)) defined in (3). Furthermore,p(y(m)|ex) is defined
as in (1) replacing the last term byp(y(m)|x(r,k)) = δ(y(m) −
y(m)(r,k)).

4. IMPLEMENTATION
In this section we provide the details of the data set used, the

image representation based on bags of visual words, and the imple-
mentation of the following algorithms: label propagation,random
walk, stationary solution, and combinatorial harmonic.

4.1 Data Set
The data set consists of 307 annotated images with one multi-

class problem (theme with seven classes) and 21 binary problems



(see Fig. 5). All images have been collected from the Artstordigital
image library [2], and annotated by art historians (Fig. 3 shows an
example of a manual annotation). For the experiments in Sec.5, we
run a 10-fold cross validation in order to show the results, and for
each run, divide the data set into a training setD with 276 images
(90% of the data set) and a test setT with 31 images (10% of the
data set).

4.2 Image Representation
The images are represented with the bag of visual words model[13],

where each visual word is formed using a collection of scale in-
variant feature transform (SIFT) local descriptors [31]. The visual
vocabulary is built using the vocabulary tree proposed by Nistér
and Stewénius [36]. The SIFT descriptor consists of a feature
transform applied to an image patch, which extracts a histogram
of gradient orientations weighted by the gradient magnitudes. In
this work, the image patch location (in the image) and scale (patch
size) are randomly determined [37], and we generate 1000 descrip-
tors per image. Then, the vocabulary is built by gathering the de-
scriptors from all images and running a hierarchical clustering al-
gorithm with three levels, where each node in the hierarchy has
10 descendants (this hierarchy is a directed tree, where each node
has at most 10 edges) [36]. This results in a directed tree with
1 + 10 + 100 + 1000 = 1111 vertexes, and the image feature
is formed by using each descriptor of the image to traverse the
tree and record the path (note that each descriptor generates a path
with 4 vertexes). The histogram of visited vertexes is weighted by
the node entropy (i.e., vertexes that are visited more oftenreceive
smaller weights). As a result, an imageI is represented by the
histogramx ∈ ℜ1111 .

The probability of the transition of feature vectorx(r,j) given
x(r,j−1) andex of (2) is then defined as:

p(x(r,j)|x(r,j−1), ex) = sx(x(r,j),x(r,j−1))sx(x(r,j), ex), (7)

and the transition probability between two feature vectorsis

p(x(r,1)|ex) = sx(x(r,1), ex), (8)

with sx(xi,xj) = 1
Zx

P1111
d=1 min(xi(d), xj(d)) whereZx is a

normalization factor. Consequently, we can define the following
adjacency matrix to be used in the graph-based algorithms below:

W(j, i) = sy(yi,yj) × sx(xi,xj) × sx(xj , ex), (9)

with W(i, i) = 0 for all i ∈ {1, ..., N}.
In Fig. 4 it is shown a small part of the graph which takes into

account the image features and annotation of the training set de-
scribed by the adjacency matrixW in (9). In this part of the graph,
we take a training image represented byex shown at the center (note
the enlarged image in the figure), and display the graph structure
around it. Notice that the neighboring images in the graph tend to
be similar in terms of their visual information or their annotation
keywords (for instance, notice in the graph that most of the neigh-
boring images are of the themeThe Annunciation, which is the
theme of the central image). In order to show this graph, we use a
variant of the multidimensional scaling algorithm for visualization
(MDS) [5].

4.3 Label Propagation
The annotation and retrieval using the label propagation model

consists of a one step random walk procedure that uses only the
visual similarity, as follows:

p(y|ex) =
1

ZLP

X

r∈N

p(x(r)|ex)p(y|x(r)), (10)

Figure 4: Network structure in the training set shown using
a variant of the MDS algorithm [5]. The large image in the
center represents a training image with its most similar images
(in visual an annotation terms) closer in the graph.

whereN ∈ D denotes the set of|N | nearest neighbors relative
to ex using the proximity measure (8), andZLP represents a nor-
malization factor. The definition ofp(y|ex) in (10) is used in the
annotation (Equations 4 and 5) and retrieval (6) of test images.

4.4 Random Walk
The random walk uses the adjacency matrixW in (9) in order to

build the probability transition matrix as follows:

P = D
−1

W, (11)

where the diagonal matrixD(i, i) =
P

j
W(i, j), which makes

the row sum ofP one. The initial distribution vector takes into
account the similarity between the test imageex and all images in
the database, as inu = [sx(x1, ex), ..., sx(xN , ex)]T , whereu is
normalized in order to have‖u‖1 = 1. The random walk starts
with the selection of a training image (sayith training image) by
sampling the distributionu. Then, the distribution denoted byπT

i A

(with πi a vector of zeros with a one at theith position) is used to
select the next training image. AfterR = 10 steps of the random
walk, a list of visited training imagesTr,k is formed, and the test
image annotation is produced by (4) and (5), where the numberof
random walks isK = 100. The retrieval is produced as described
in (6).

4.5 Stationary Solution
The stationary solution estimates the result of a random walk

with a large number of steps [26]. The adjacency matrixW in (9)
is used to build the following normalized transition matrix:

S = D
−0.5

WD
−0.5, (12)

with D defined in (11). This solution exploits the eigenvector cen-
trality (i.e., the eigenvector ofS associated with the eigenvalue 1),
in order to determine the rank of a node (recall that a node repre-
sents a database image). This rank denotes the likelihood ofvisiting
the node after a large number of random steps using a random start-
ing point, where the decision to visit graph nodes is based onthe
edge weights [26].

Assuming a random initial distribution of the vertexes denoted
by the vectorv(0), and that at each iteration of the random walk, the
distribution used for the decision process is based on the weighted
edges and on the probability vectoru in (11) weighted by(1− α),



with 0 ≤ α < 1, we compute the stationary vector as follows [49]:

v
(t) = (αS)t

v
(0) + (I + αS)(1 − α)u ⇒

v
(∞) = (1 − α)(I − αS)−1

u,
(13)

with I denoting the identity matrix.
Finally, in order to produce the annotation defined in (4) and(5),

and the retrieval in (6), we define the probability of label given a
test image, as follows:

p(y|ex) =
1

ZSS

NX

i=1

v
(∞)
i δ(y − yi), (14)

wherev(∞)
i is theith component ofv(∞) defined in (13), andZSS

represents a normalization factor.

4.6 Combinatorial Harmonic
The solution based on combinatorial harmonic follows the nota-

tion of semi-supervised labeling [51] and image segmentation [19]
problems. Consider the following extension of the adjacency ma-
trix (9), which includes the similarity between the test image and
database images:

fW =

"
W eu
euT 0

#
, (15)

whereW is the adjacency matrix in (9) andeu is the un-normalized
initial distribution vectoru defined in (11). The goal is then to
find the distributionfU ∈ ℜN (‖fU‖1 = 1), which represents the
probability of first reaching each of the training images in arandom
walk procedure, where the labeling matrix representing thetraining
images is denoted byFL = IN , whereIN is anN × N identity
matrix. In order to findfU , we minimize the following energy func-
tion:

E(F) =
1

2

‚‚‚‚‚[FL, fU ]eL
"
F

T
L

f
T
U

#‚‚‚‚‚

2

2

, (16)

whereF = [FL, fU ], and eL = eD − fW is the Laplacian matrix
computed from the the adjacency matrixfW (15), with diagonal
matrix eD(i, i) =

P
j

fW(i, j). This Laplacian matrix can be di-

vided into the same blocks as infW, that is

eL =

»
LW B

B LU

–
. (17)

Hence, in order to findfU , we solve the following optimization
problem [19]:

minimize E(F)
subject to FL = IN

(18)

which is convex given thateL is positive semi-definite. Eq. 18 is
solved by setting∂E(F)

∂fU
= 0, which leads to the following analyti-

cal solution:fT
U = −L−1

U BT IN

The annotation defined in (4) and (5), and the retrieval in (6)are
computed using the following probability of label given test image:

p(y|ex) =
1

ZCH

NX

i=1

fU (i)δ(y − yi), (19)

wherefU (i) is theith component offU , andZCH is a normaliza-
tion factor.

5. EXPERIMENTS
In this experiment we compare the model presented in (3) to

models based on SVM [45] and on RF [7] classifiers. For the RF
model, we buildL = 22 independent classifiers (one for the multi-
class theme classification and the others for the binary problems -
see Sec. 4.1), where each classifier is defined asp(yl|ex, θRF (l)),
with θRF (l) representing the parameters of the random forests clas-
sifier for thelth classification problem (recall thatl = 1, ..., L). We
obtainby using the notation defined in (3), but replacingp(yi(m)|ex)
byp(yl(m)|ex, θRF (l)). The main parameters of the random forests,
which are the number and height of trees, are determined withcross
validation, where the training setD is further divided into a train-
ing and validation sets of90% and10% of D, respectively. The
annotation is performed with (4) and (5), and the retrieval is done
with (6). For the SVM, we trainM = 28 classifiers using the
one-versus-all training method. Specifically, we train thefollowing
classifiersp(y(m)|ex, θSV M (m)), for m ∈ {1, ..., M}, and the
annotation confidenceby is produced by (3), replacingp(yi(m)|ex)
by p(y(m)|ex, θSV M (m)). The main parameter of the support vec-
tor machine, which is the penalty factor for the slack variables, is
also determined with cross validation, where the training set D is
divided into a training and validation sets of90% and10% of D, re-
spectively. Also, we perform the test image annotation with(4) and
(5), and the retrieval with (6). Note that these two models (RF and
SVM) roughly represent the state-of-the-art approaches for image
annotation and retrieval problems explained in Sec. 2.

In the results below, we use the following acronyms: LPi for
label propagation withi nearest neighbors in (10), SS for stationary
solution, CH for combinatorial harmonic, RF for random forests
and SVM for support vector machines.

5.1 Retrieval
We measure the performance of the system in terms of retrieval

using the precision and recall measures [10]. For each annotation
classy(m) belonging to the set of classes in the test setT find the
Q test images that produce the maximum values for (6). Out of
thoseQ images, let the setA be the images for whichy(m) = 1
(note that|A| ≤ Q). Also, letB ⊂ T be the set of all test images
that havey(m) = 1. Then, the precision and recall are computed
as follows:

precisionR =
|A|

Q
, andrecallR =

|A|

|B|
. (20)

The performance is computed with the mean average precision[10]
(MAP), which is defined as the average precision over all queries,
at the ranks where the recall changes. The results in Table 1 (first
column) show the MAP average and standard deviation for the 10-
fold cross validation experiment. Figure 6 (left) displaysthe re-
trieval performance of the CH solution as a function of the number
of training images. Notice that the retrieval performance is pos-
itively correlated with the number of training images. Figure 7
shows the the top retrieval results for four annotation classes using
the CH algorithm.

5.2 Annotation
The performance of the annotation procedure is evaluated by

comparing the results of the system in (4) and (5) with the manual
annotation of the ground truth (recall that the setT also contains
the manual annotation) [10]. For each annotation problem (binary
or multi-class) indexed byl ∈ 1, ..., L, assume that there arewH

manually annotated images inT , and the system annotateswauto,
of whichwC are correct. The precision and recall are computed as:

precisionA =
wC

wauto

, andrecallA =
wC

wH

. (21)



Table 1: Average± standard deviation of the retrieval and an-
notation performance over the 10-fold cross validation experi-
ment (the best performance for each measure is highlighted).

Models MAP Mean per-class Mean per-class
Recall Precision

LP1 0.33 ± .03 0.43 ± .04 0.43 ± .04
LP10 0.33 ± .03 0.57 ± .05 0.31 ± .03
LP20 0.33 ± .02 0.58 ± .06 0.31 ± .02
RW 0.31 ± .03 0.51 ± .06 0.30 ± .04
CH 0.35 ± .03 0.66 ± .05 0.32 ± .03
SS 0.33 ± .03 0.57 ± .03 0.30 ± .02
RF 0.30 ± .03 0.23 ± .03 0.40 ± .06
SVM 0.22 ± .01 0.12 ± .01 0.52 ± .03

Figure 5: Number of training images per class.
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Figure 6: Performance of the retrieval (left) and annotation
(right) as a function of the number of training images using
the CH algorithm.

Then, the values ofprecisionA andrecallA are averaged over the
set of binary and multi-class problems. The results in Table1 (last
two columns) show the average and the standard deviation of the
per-class precision and recall for the 10-fold cross validation. Fig. 6
(right) displays the annotation performance (mean per class preci-
sion and recall) of the CH algorithm as a function of the number
of training images. Notice the positive correlation between preci-
sion and recall in terms of the number of training images. Figure 8
shows the annotation produced by the CH algorithm in four test
images.

6. DISCUSSION AND CONCLUSIONS
In this work we presented a graph-based model for the annota-

tion of art images. The retrieval experiment (Tab. 1) shows that

the CH model produces better results than current state-of-the-art
approaches based on SVM and RF. Also notice that the LP meth-
ods also show competitive results, indicating that simple models
can also lead to powerful methods. The annotation results inTab. 1
show that the CH approach produces the best performance in terms
of recall, but SVM is better in terms of precision (but noticethe
poor result of SVM in terms of recall). This happens because SVM
rarely classifies positively the test images with respect toeach la-
bel, but whenever it does so, the annotation is often correct. We be-
lieve that this happens due to the limited number of trainingimages
per class to estimate the parameters of the SVM model. We plan
to improve our method by modeling the dependencies between la-
bels using, for example, structural learning methods [44, 47]. This
would prevent the following two issues observed in Fig. 8: 1)use of
too many labels in the annotation, and 2) presence of pairs ofanno-
tations that should never appear together (e.g., the presence ofwise
menin prints of themeAnnunciationshould not be allowed). The
incorporation of structural learning in the methodology should be
assessed with more appropriate measures, such as the one described
by Nowak et al. [38]. We also intend to investigate other image fea-
tures for image representation, such as wavelets and curvelets.
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Figure 7: Retrieval results of the CH algorithm on the test set. Each row shows the top five matches to the following queries(from
top to bottom): ‘rest on the flight into Egypt’, ‘Christ child’, ‘Mary’ , and ‘dove’. Below each image, it is indicated whether the image is
manually annotated with the class.

Human Theme: Annunciation Theme: Magi Theme: Baptism of Christ Theme: Rest flight Egypt

Annotation angels floating, dove, Gabriel Christ-child, Mary, st. Joseph angels, Christ, dove, angels, angels floating, Christ-child

Lilly, Mary, wing wise men st. Frances, wing donkey, Mary, miracle...palm tree

st. Joseph, wing

Comb. Harm. Theme: Annunciation Theme: Magi Theme: Baptism of Christ Theme: Rest flight Egypt

Annotation angels floating, Christ-child, dove, angels, angels floating, Christ, dove, angel, angels, angels floating angels floating, Christ-child, donkey,

Gabriel, Lilly, Mary, shepherd, Gabriel, Lilly, Melchior, st. Elizabeth Christ, dove, st. Frances, Mary, miracle...palm tree, st. Joseph

vase, wing, wise men st. Frances, vase, wing, wise men wing, wings vase, wing, wings

Zacharias

Figure 8: Comparison of CH annotations with those of a human subject on test images.


